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healthy and deserted, with a critical shift that can be caused by a change in grazing pressure.

o Although the equations for the soil and vegetation evolution in hillslopes are known at de-
tailed resolutions, their aggregated behaviour is still poorly understood.

o Traditionally this has been explored using simplified models derived from expert knowl-
edge, but in this study a machine learning model is used instead.
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Methods

« Our knowledge of the system is captured  « Studying the nullclines (AZ/At = 0) of the

Results

by the time transfer function f, which de- time transfer function, we can identify how
scribes how the state variables Z (i.e. bio- the system equilibria are aftected by changes
mass and soil depth) change over time. It in grazing pressure (Figures 1, 2). T
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o A dataset is created by running a physi-
Cally-based Spatially-explicit model on a ::’:__— — = Unstable biomass nullcline
hillslope for several time steps, forcing it - N Dt muine
thr ough changes 1n or azing pressure. '4'3\4 . — Stab'é soil depth nulicline Figure 1: Biomass net growth (a,c) and soil depth increase (b,d) plotted against biomass B and
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. The state variables Z are s pati ally aver- Soil depth (m) soil depth D at grazing pressure g=1.76 kg/m?/yr. Obtained using an artificial neural network (a,b)
: or expert-based analytical equations (c,d). Solid line, stable nullcline; dashed line, unstable null-
aged over the hillslope. Figure 2: Stable (solid line) and unstable (dashed line) | o o
cline. Arrows indicate the direction of change.
e An artificial neural network is trained nullclines of the soil (red line) and vegetation (green
to predict the rate of change from one line) subsystems at grazing pressure g=1.76 kg/m?/yr.

time step to the next (AZ/At), capturingf.  The yellow circles represent the stable system equilibria.

c O n C I u S i O n S Machine learning training:

ed manner. It combines existing model formula- is forced with sinusoidal oscillations around the
tions and parameters values taken from the liter- initial value, following a sharp linear increase in Model validation:

e This methodology could be extended towards other geoscientiﬁc systems in which the ature (Appendix A, Karssenberg et al. 2017). the end to force the transition into the desertic =~ The models are validated through forward simu-
state to happen (Figure 4c). The spatially aver-  lation of biomass and soil depth using Euler’s

4 -aom fig‘“’e ; | M;dell:‘;ef‘ ani di“retiza' aged values of biomass (B), soil depth (D) and  method (Figure 4). While RF provides better esti-
| oomE grazing pressure (g) are stored and temporaly =~ mates in forward simulation, ANNs generate
smoothed using a median filter. more realistic time transfer functions (Figure 1).

biased or even provide physically inconsistent results.

line), expert-based equations

5000 (dashed violet line), artificial
neural network (red line) and
random forest (green line) models
are compared.

Additional information Both fully connected artificial neural network Figure 4 Forward simulation of
. . . . . = e soil depth (a) and biomass
Machine learning outperforms expert-based models in estimating the system’s aggregate Detailed model- Data set generation: (ANN) and random forest (RF) models have 8 of the hillslope ecosystem forced
: : . 1 £th ot han ' . . ' . . been tested using multiple hyperparameters. 3 with a sinusoidal grazing pressure
behaviour, enabhng an evidence-based know edge of the desertification mechanisms. The model represents the hydrological, geomor- The dataset is generated running the detailed The input variables are B, D and g at a given time pattern (<) including a linear in-
. . L phological, and vegetation subsystem and the =~ model forward in time starting at equilibrium step ¢, while the output is the rate of change for B < crease at the end to induce the
= Where data is scarce or when extr apolatlng, the artificial neural network can become couplings between those in a spatially distribut- for a random grazing pressure value. The system .3 b between 7 and i+A¢ 5 D) ' transition into a desertic state. The
. g aggregated detailed model (blue
S

general behaviour is not yet well understood.
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grazing pressure.



