Estimating the velocity of ancient bottom currents using grain size distributions measured in thin sections of contouritic rocks with siliceous cements

Youp Heinhuis | Correspondence: y.heinhuis@uu.nl, Andrew H. Caruthers, Benjamin C. Gill, Kayla McCabe, Theodore R. Them, II, Yorick P. Veema, and João P. Trabuco Alexandre

1Department of Earth Sciences, Universiteit Utrecht | 2Department of Geological and Environmental Sciences, Western Michigan University | 3Department of Geosciences, Virginia Tech | 4Department of Geology and Environmental Geosciences, College of Charleston | 5Department of Earth Sciences, University of Cambridge

Paleocurrent problem
The quantification of paleocurrent speed of ancient contourites is notoriously difficult. Modern contourite deposits are often calibrated against actual current measurements, whereas ancient contourites require a proxy to estimate current speeds.

Cementation problem
The grain size of the coarse mud fraction of contourites is often measured and used as a proxy for bottom current velocity. This sortable silt proxy (McCave et al. 2017) requires sediments to be disaggregated, which is difficult to achieve in well-lithified Mesozoic and Paleozoic deepwater rocks.

Take home message
Image analysis on micrographs of well-lithified contourites can be used to acquire grain size distributions, which can be used to quantify paleocurrent speeds. Key uncertainties of this workflow are the representativeness of the micrograph for the sample and grain recognition.

Workflow
Figure 1 | Bigradational bed, typical for silty contourite deposits, as apparent from the comparison with the facies model. The bigradational bedding is indicative of an increasing and then decreasing paleocurrent velocity (modified from Rebesco et al. 2014).

Representativeness
Figure 2 | Three sets of micrographs were produced to test grain recognition by the image analysis software. (A) Leica scan. (B) 25x magnification micrograph. The latter results in the most accurate grain recognition, apparent from the small amount of clustering.

Grain recognition
Figure 3 | The grain size distribution of 50x magnification micrographs (C, E) is highly location dependent, as opposed to 25x magnification micrographs (B, D) from the same sample (A). This becomes apparent from differences in the grain size distribution, that are large for the 50x magnification micrographs and small for the 25x magnification micrographs (F). Since the largest grain is medium sand, the error in the coarser fractions is caused by clustering.

Figure 4 | Image workflow. A micrograph (B) is taken from a thin section (A) using a petrographic microscope. Brightness thresholds are then applied to extract light and dark grains (C, D). The images are subsequently spliced (E). Finally, the area of each grain is measured (F).

Figure 5 | The upper member of the McCarthy Formation, exposed on the slopes of the Chitistone mountain, South-central Alaska, is the record of Jurassic deep water sedimentation (Veema et al 2022).

Figure 6 | Stratigraphy of the upper member of the McCarthy Formation. We applied our workflow to determine the grain size distribution of contouritic rocks with siliceous cement and thereby estimate paleocurrent speeds, using the sortable silt proxy.

References

Acknowledgement
This research project was sponsored by the Society for Sedimentary Geology and The Molengraaf fund (TU Delft).