

Introduction

Fig. 1 Schematic drawing of stomata and gas exchange. Optimality modelling describes the trade-off of carbon gain versus water loss through the least-cost hypothesis, described in the formula above. A = photosynthesis, E transpiration, and a and b are unitless cost factors.

Eco-evolutionary optimality (EEO) states that plants adapt or acclimate to their environment, thereby eliminating uncompetitive plant strategies by natural selection. EEO has been proven successful for developing hypotheses and models of the terrestrial biosphere. On a plant leaf level, EEO theory is used to analyze and model plant processes including photosynthesis, gas exchange, and stomatal behavior. Plants regulate their gas exchange by dynamically adjusting their stomata on a short term time scale (opening and closing) and long term time scale (stomatal size and density), which also influences photosynthetic capacity. The operational stomatal conductance (G_{op}) is determined by the opening state of the stomata during typical growth conditions. The anatomical maximum stomatal conductance (G_{smax}) results from the maximum stomatal aperture, stomatal density and pore depth.

Aims:

- test photosynthesis and exchange gas responses to elevated CO₂
- combine biochemical (Fig.1) and morphological (Fig.2) responses in one framework
- test optimality model with results

This poster presents the preliminary results

Host facility: University of Western Australia, Per climate chamber, 9 plants per species Perth

Two climate controlled growth rooms:

- 12 hours day length
- 700 PAR
- 30 degrees Celsius
- CO₂ concentration: 400 and 1000 ppm
- 6 species (see table A)

were grown in 1 liter pots. Measuremen started when first fully mature leave appeared. Measurements were made wi a Licor portable photosynthesis syste (LI6400 and LI6800). Imprints of cuticle for microscope analysis were made with nail varnish., to derive G_{smax}.

Franks, P. J., Leitch, I. J., Ruszala, E. M., Hetherington, A. M., & Beerling, D. J. (2012). Physiological Sciences, 367(1588), 537–546. https://doi.org/10.1098/rstb.2011.0270 Stocker, B. D., Wang, H., Smith, N. G., Harrison, S. P., Keenan, T. F., Sandoval, D., Davis, T., & Prentice, I. C. (2020). P-model v1.0: An optimality-based use efficiency model for simulating ecosystem gross primary production. Geoscientific Model Development, 13(3), 1545–1581. https://doi.org/10.5194/gmd-13-1545-2020

Testing the responses and interplay of leaf physiological and morphological traits at elevated CO₂ levels in six common crop species

Authors: A Odé¹, PL Drake², JA Lankhorst¹, E Veneklaas², KT Rebel¹, HJ de Boer¹

Affiliations: ¹ Utrecht University, Copernicus Institute of Sustainable Development, Environmental Sciences ² University of Western Australia, School of Biological Sciences

Morphological prelimary results

Fig. 2 Conceptual framework after Franks et al. (2012). Operational stomatal conductance (Gc(op)) operates on Gc(max) curve by opening/closing the stomata. Subambient or elevated CO2 levels will results in increase in Gc(max) or decrease in Gc(max). Gop will shift along the new curve to return to high sensitivity region (a to b to c for elevated levels, a to d to e for subambient levels).

hotosynthesis	Class
C3	Eudicot
C3	Eudicot
C3	Eudicot
C3	Monocot
C4	Monocot
C3	Eudicot (woody species)

Measurement environment	Replicates
Ambient environment	3-5 per group
Saturating light (1000 PAR)	5 per group
(to check for ACi's)	~2 per group
Ambient environment	8/9 per group
Nail varnish	8/9 per group
ACi measured leaf	8/9 per group
Ambient + saturating light (1000 PAR)	8/9 per group

Key concepts:

163	
nts	<u>G_{smax}</u> = anatomical maximum
/es	stomatal conductance (theoretical),
<i>ith</i>	derived from stomatal density and
em	stomatal size
the	\underline{G}_{op} = operational stomatal conductance
ade	(tradeoff high sensitivity/water loss),
	~0.2*G _{smax}
	<u>G_{opt} = optimal stomatal conductance</u>
	(derived from optimality model)

Results of stomatal density (SD), guard cell length (GCL), and calculated G_{smax} by the formula below. All results are of the Borlotti bean species.

Fig 4. Boxplot of maximum stomatal conductance (Gsmax) of Borlotti bean. There is a significant treatment effect (P < 0.05). AC = ambient CO₂ (400 ppm), HC = elevated CO₂ (1000 ppm).

Literature

Biochemical preliminary results (continued)

Fig. 7. Boxplot of operational stomatal conductance (Gop) of five species, showing a significant species effect (P < 0.05), but not significant treatment effect. AC = ambient CO₂ (400 ppm), HC = elevated CO₂ (1000 ppm)

 \rightarrow So, A_{max} significantly increases at elevated CO₂ levels. G_{op} slightly decreases, but not

Conclusions

Plants adapt their biochemistry and morphology at elevated CO_2 levels. Photosynthesis traits, V_{cmax} and J_{max} decrease, while operational maximum photosynthesis rates increase. Morphologically, stomatal density decreases and stomatal size increases, resulting in a lower G_{smax}. Through this interplay, plants manage to reach comparable levels of photosynthesis as at ambient CO_2 , despite a much higher Ci, thereby conserving water by managing their stomata.