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Towards Carbon Circularity
GHG Emissions and Carbon Efficiency Assessment of Dutch DKR-350 Pyrolysis
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Background Figure 1: Waste management perspective Figure 2: Naphtha production perspective
This research aimed to evaluate the life cycle Functional unit: waste management of 1000 kg DKR-350 Functional unit: production of 1000 kg naphtha
GHG emissions of Dutch DKR-350 (a low-
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recycled via innovative non-catalytic pyrolysis DKT%O DKT%O DKT%O C“‘Te""
technology. The pyrolysis oil, with properties — o
: . . { yrolysis Incineration { N p y.s Y/ d J { Naphtha production in refinery }
resembling feed-cracking naphtha, is a + pyrolysis oil upgrade pyrolysis ol upgrade
potential precursor in plastic manufacturing. l 1 1 1 L l J
We also assessed the carbon efficiency, a e ~f e A "1 Lo "1
. . . . . . g o qe DKR-350 t vsis oil & DKR-350 t lvsis oil DKR-350 waste hth
E)lvc?tal cLLcuIanEy mcljlcator of pyrolysis’ ability KR-35Qwaste  pyrolysisof rancgement | "ecoveres iohmary funciion  mancgement&. e
O CIose the Ccarbon 100pP. (primary function) (orimary function) rolysis co-products
MEthOdS (@) System boundaries (a) System b dari
d stem ooundaries
Two DKR-350 samples were analysed, g
unwashed and washed (in hot water with a 3000 3000
deFergent). They were pyrolysed in a pilot-scale o 2000 | = 2000 |
fluidized-bed reactor. o . 5
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The LCA was carried out from two perspectives, S S mfam
based on how the primary function of pyrolysis < = a6 e
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2. Naphtha production perspective: (b) Cradle-to-gate lifecycle GHG emissions (b) Cradle-to-gate lifecycle GHG emissions

the primary function was to produce
naphtha; results are compared to fossil
naphtha production in the refinery.

Figure 3: Carbon efficiency of the pyrolysis system (unwashed case)

Carbon efficiency (n,) represents a share of carbon recovered in pyrolysis oil relative to the sum of

The gquraphlcal and temporal SCF)pes Were direct and indirect carbon. Indirect carbon flow represents carbon embedded in fossil fuels utilised 5. [%] = n;:'ou [kg] ok 100
determined for the Netherlands in 2020. We during the indirect processes, predominantly for electricity generation. It is calculated based on the M feeastock kgl +Me inazproc. kg
employed an LCA cradle-to-gate approach Wwith amount of airborne fossil CO, emissions caused by these processes.
Cut-C?ff (|.e.. the impact of the DKR-350's | Indirect carbon emissions
previous lifecycle was excluded). Fossil carbon S
fee':lii:'m':k ’ DrOCesses Indirect carbon emissions: 27 kg C
(indirect C) .

Conclusions and recommendations Direct carbon emissions: 23 kg C

e QOur analysis showed high sensitivity of the
results; we recommend that future LCA
studies of multifunctional systems include a
goal-oriented approach in their analysis
« Washing of DKR-350 did not significantly DKR-35(
improve pyrolysis performance in terms of eedsl
GHG emissions d
« Pyrolysis as a waste management
technology provides significant GHG
emission savings compared to incineration
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IndIFECt. carbon in any comprehenswe Carbon flows normalised to 100 kg C input to the pyrolysis reactor. The green dashed flow represents an uncertain carbon flow in the pyrolysis
circula rlty and carbon efﬂuency assessments oil (i.e. uncollected oil fraction from the reactor during the pilot-scale trials).

on plastics circularity

Pyrolysis oil: 70 kg C
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