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• Soil lithologies are unequally
distributed. sand (Zs, 2806 
samples), clay (Ks,560 samples), 
silt(Kz/Lz, 181 samples)

• Models are trained for seperate
soil classes as well as for the Full 
dataset (3547 samples) with and
without outliers

• The Deep Drilling dataset consists
of 164 samples, predominatly from
the Lz/Kz category.

Log Ks [m/d] d10 [mm] d50 [mm] Lutum [%] Silt [%] Sand [%]

Mean -0.62 0.10 0.20 6.31 13.80 77.42

Min -6.70 4.21 e-4 2.74 e-3 0 0 0

Median 0.37 0.10 0.19 1.00 2.92 96.04

Max 2.08 0.50 0,98 83.27 77.37 100

Variance 4.39 0.01 0.02 131.79 427.67 1111.67
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• Particle Size Distribution (PSD) is a sorted list of minimal diameter of 
a material.

• Saturated hydraulic conductivity (Ks) is currently predicted through
empirical formulas using the PSD or direct measurement. 

• We evaluated the performance of 6 Machine Learning techniques
(Artificial Neural Network (ANN), Decision Tree (DT), Linear Regression (LR), 
Random Forest (RF), Support Vector Regression (SVR) and XGBoost (XG) ) to
predict Ks from PSD on a dataset of 3400 samples from the Dutch 
shallow subsurface.

Abstract

Table 1: Descriptive Statistics for the full dataset.

Figure 1: Visual representation of Soil Classes. 1 

Figure 2: Predicted Ks values by Algorithms (y-axis) against the measured Ks data (x-axis). The dotted
line represents a 1:1 line. The black lines represent the 5th and 95th quantiles

RF 
Full PSD

ANN
Full PSD

XG
Full PSD

RF
PSD-derived

ANN
PSD-derived

XG
PSD-derived

R2 0.92 0.92 0.92 0.9 0.89 0.9

MSE 0.57 0.56 0.57 0.63 0.64 0.63

• RF and XG are the best performing algorithms. All algorithms
outperform the five best performing empirical formulas. 

• Predictive ability is similar to other studies that used different soil
parameters. 3,4

• All algorithms perform best when trained on the Full Dataset, rather
than on subsets of soil classes

• Using PSD-derived variables (d10, d50, d60)  yields good results (Table 2)
• Porosity prediction from the PSD is not accurate. .

Results

• Promising and cheap technique for geo-technical, geo-ecological as 
well as geothermal exploration, since performance of RF and XG on the
Deep Drilling dataset is in line with results from petrophysical analysis.

• A large and diverse training dataset leads to good probability of 
succesfull prediction in other areas.

• Importance of d10 calls for further exploration in this parameter.

Conclusion

Figure 3: Model Performance, evaluated by R2, for all algorithms and subsets of data. 

Figure 4:Feature importance for the RF, both for the full run and PSD-derived variable run. Feature importance
indicates which feature variable has most influence in determining the target variable. 

Table 2: R2 and MSE for the Test Dataset of Different Algorithms
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