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Using Artificial Intelligence to predict Saturated Hydraulic

Conductivity from Particle Size Distribution

A comparative analysis of 6 Machine Learning Algorithms

Valerie de Rijk, BSc

Abstract

« Particle Size Distribution (PSD) is a sorted list of minimal diameter of
a material.

e Saturated hydraulic conductivity (K,) is currently predicted through
empirical formulas using the PSD or direct measurement.

« We evaluated the performance of 6 Machine Learning techniques
(Artificial Neural Network (ANN), Decision Tree (DT), Linear Regression (LR),
Random Forest (RF), Support Vector Regression (SVR) and XGBoost (XG) ) to
predict K. from PSD on a dataset of 3400 samples from the Dutch
shallow subsurface.

Table 1: Descriptive Statistics for the full dataset.

Log K, [m/d] d10 [mm] d50 [mm] Lutum [%] Silt [%] Sand [%]
Mean -0.62 0.10 0.20 6.31 13.80 77.42
Min -6.70 4.21 e-4 2.74 e-3 0 0 0
Median 0.37 0.10 0.19 1.00 2.92 96.04
Max 2.08 0.50 0,98 83.27 77.37 100
Variance 4.39 0.01 0.02 131.79 427.67 1111.67

Figure 1: Visual representation of Soil Classes. !
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Table 2: R>and MSE for the Test Dataset of Different Algorithms

RF ANN XG RF ANN XG

Full PSD Full PSD Full PSD PSD-derived PSD-derived PSD-derived

R2 0.92 0.92 0.92 0.9 0.89 0.9
MSE 0.57 0.56 0.57 0.63 0.64 0.63
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Figure 3: Model Performance, evaluated by R?, for all algorithms and subsets of data.
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Figure 2: Predicted K values by Algorithms (y-axis) against the measured K, data (x-axis). The dotted
line represents a 1:1 line. The black lines represent the 5th and 95th quantiles

Results

* RF and XG are the best performing algorithms. All algorithms
outperform the five best performing empirical formulas.

* Predictive ability is similar to other studies that used different soil
parameters. 34

« All algorithms perform best when trained on the Full Dataset, rather
than on subsets of soil classes

 Using PSD-derived variables (d,,, dz,, dg) Yields good results (Table 2)

 Porosity prediction from the PSD is not accurate. .
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Figure 4:Feature importance for the RF, both for the full run and PSD-derived variable run. Feature importance
indicates which feature variable has most influence in determining the target variable.

Conclusion

« Promising and cheap technique for geo-technical, geo-ecological as
well as geothermal exploration, since performance of RF and XG on the
Deep Drilling dataset is in line with results from petrophysical analysis.

A large and diverse training dataset leads to good probability of
succesfull prediction in other areas.

 Importance of d,, calls for further exploration in this parameter.
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