

A diatom-based palaeoprecipitation record for Bonaire

Romée van der Kuil², Kees Nooren^{1,2}, Francesca Sangiorgi², Madlene Nussbaum², Timme Donders² ¹Royal Netherlands Institute of Southeast Asian and Caribbean Studies (KITLV/KNAW), 2311 BE Leiden ²Faculty of Geosciences, Utrecht University, 3584 CB Utrecht

Introduction

This research aims to create a better understanding of the frequency and duration of past droughts and their impact on Bonaire. For this purpose I will use diatoms as a proxy for drought, as they are very sensitive to salinity changes and therefore a powerful tool for reconstructing a palaeoprecipitation record of the late holocene. To create a high-resolution record (>300 samples) manual counting is extremely time-consuming. Therefore I will develop a method to automatically count diatoms from virtual slides using recent advancements in deep learning.

Deep Learning for Diatom Classification

A slide-scanning microscope is used to create virtual diatom slides. To train the model a training dataset will be created by annotating diatom slides in "Pollenlabeler"⁴ (fig. 4). To get the coordinates from the diatoms in the pictures edge-detection software SHERPA is used⁵. This data is then used to train the Yolov8 image segmentation and classification model developed by Ultralytics⁶.

Area and Core

Saliña Bartol is a hypersaline lagoon, separated from the sea by a coral rubble ridge. We constructed a raft using pallets and tractor tires to reach the middle of the lagoon, and took two cores using a piston corer.

Figure 4. Annotation of diatoms using the pollenlabeler.

A problem with using deep learning is that models are usually trained on small image sizes (640x640 pixels), while our virtual slides are very big. To deal with this I will use SAHI⁷ (Slicing Aided Hyper Inference), which slices the large pictures into tiles to draw inference, and stitches the results back together.

Figure 1. Map of Saliña Bartol including the locations of the gravity core (SB-1), cores taken with the piston corer (SB-2, SB-3), and lake level/rainfall between November 23 and December 10, 2023.

Figure 2. Transect A- A'. Our cores (SB1-SB3) were not deep enough to encounter the tsunami deposit (red bar in core BBA-8 and BBA-10) found by Engel et al. (2013)³. The tsunami deposit was dated to approximately 3000 yr BP.

The core that is used for this research is SB-2, which is the longest, and likely spans the past 2000 years.

SB1 SB2-3 **SB2-5** SB2-1 SB2-2 SB2-4

WITHOUT SAHI

WITH SAHI

Figure 5. Segmentation of small objects (birds) in a high resolution image without SAHI and with SAHI (source: learnopency.com).

Preliminary Findings

So far 14 of the 80 diatom slides from SB2-5 have been counted manually. Numerous diatom species were found of which a few tend to be more dominant. CaCO₃ content and LOI (Loss on Ignition) of SB2-5 and SB2-4 were also measured.

Figure 3. The gravity core (SB1) and one of the cores taken with the piston corer (SB2-1, SB2-2, SB2-3, SB2-4, SB2-5).

Figure 6. LOI, CaCO₃ content, and diatom relative abundance (%) for the most common species. The diatom species in these manually counted samples are used as a training set for deep learning.

³Engel, M., Brückner, H., Fürstenberg, S., Frenzel, P., Konopczak, A.M., Scheffers, A., Kelletat, D., May, S.M., Schäbitz, F., Daut, G. (2013). A prehistoric tsunami induced long-lasting ecosystem changes on a semi-arid tropical island – the case of Boka Bartol (Bonaire, Leeward Antilles). Naturwissenschaften 100, 51–67.

⁴Developed by E. Bennink UU/UMC

⁵Kloster, M., Kauer, G. & Beszteri, B. SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects. *BMC* Bioinformatics 15, 218 (2014).

⁶Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics YOLO (Version 8.0.0) [Computer software]. https://github.com/ultralytics/ultralytics ⁷Akyon, F. C., Altinuc, S. O., & Temizel, A. (2022). Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection. 2022 IEEE International Conference on Image Processing (ICIP), 966–970. https://doi.org/10.1109/ICIP46576.2022.9897990

Created with BioRender Poster Builder