

Anne L. Kruijt¹, T. Brachert², A. Sluijs¹, J. J. Middelburg¹ 1) Department of Earth Sciences, Utrecht, The Netherlands 2) Institute for Geophysics and Geology, University of Leipzig, Leipzig, Germany

Motivation

- The latitudinal extent of tropical coral reefs is often assumed to be temperature controlled.
- **But**, during early Eocene, with water temperatures at mid and high latitudes 10-20°C warmer than today, coral reef distribution no longer reflects this tropical temperature range (Fig. 1)

Figure 1: Eocene and modern temperature reconstructions^{1,2}, plotted together with modern and Eocene coral occurrences³

We hypothesize that for the Early Eocene:

 \rightarrow Light intensity and especially winter day-length becomes the limiting factor to poleward expansion.

1. Zhu et al., 2019 2. Locarniniet al., 2019

- 3. Kiessling and Krause, 2022. 5. Kleypas et al., 1999 4. Muir et al., 2015
- 6. Zamagni et al., 2012

Can day length explain the latitudinal limit to Eocene coral reef expansion?

A simple model study of coral calcification

Approach

- We developed a simple mathematical model to explore the effect of latitudinally dependent light and temperature conditions (Fig.1) on coral calcification.
- All other environmental parameters are kept constant

- Temperature unlimiting when 16 < T < 36
- Daily average light (E) unlimiting when E > E_{saturation}

Georal = 100%

When E < E_{saturation}, G_{coral} decreases following a Monod-dependence

• When E< E_{lim}, day is considered 'dark' and G_{coral} for entire year is 0

- Low *p*CO₂ world (Fig 2A, B): calcification at mid- and high latitudes is limited by temperature (too cold)
- darkness)

Model results

• High pCO_2 world (Fig 2C, D):

- calcification at low latitudes is limited by temperature (too warm) - and at high latitudes limited by number of dark days (too much

Latitudinal extent of Eocene coral reefs (Fig. 2E) can be simulated with minimum required daily-irradiance (E_{lim}) of 105 µmol m⁻² s⁻¹ (Fig. 2C, D)

• In highest *p*CO₂ scenario, model suggests NO latitudinal range exists where both temperature and light are favorable (Fig. 2D)

T<	16° C	Lig	nt intensity			
ification possible based temperature and umber of dark days	on					
	Talcification dimini	T<16° C	Light intensia			
al calcification possible b temperature and number of dark days	due to decreasin light intensity ased on	ng		Tempera Light interation dark day	ature influence ensity influence v influence	
	T>36° C	E <e<sub>lim=105</e<sub>	T<16° C			
Coral calcification po based on number of c	ossible Coral calc lark days based c	cification pos	sible ure			
		E <e<sub>lim=105</e<sub>	E <e<sub>lim=20</e<sub>	T<16° C		
Coral calcificat based on numbe	ion possible r of dark days	1>36° C	ral calcification	n possible erature		
eef occurences 20 3 sults for the four t occurrences (pane	⁴⁰ Lat Eemperature s el E)	titude ⁵⁰ cenarios	⁶⁰ (panels A,	⁷⁰ B, C, D) toge	⁸⁰ ther with	90
ijtanne/				This p	Terration participants in OSPP	Al Carl Al EC

Discussion: what about aragonite saturation state?

- Coral calcification also depends on aragonite saturation state^{4,5}
- Aragonite saturation increases with temperature (Fig. 3) but decreases with *p*CO₂
- Our assumption that undersaturation is not controlling latitudinal extent of Eocene coral reefs only holds for a high temperature and high alkalinity ocean

Figure 3: Aragonite saturation state dependence on temperature and alkalinity, in a high CO₂ world

Take home

Our model allows us to form and test simple hypotheses:

 \rightarrow Winter day-length can determine latitudinal limit of corals during warm climate of the Eocene

 \rightarrow Current temperature tolerance might not apply to Eocene corals⁶

 \rightarrow Coral tolerance to darkness not a wellestablished metric: results provide a hypothetical limitation

