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Compaction in the Groningen Gas Field

An overview of our understanding of the compaction behaviour
of the Slochteren sandstone

Suzanne Hangx", Ronald Pijnenburg, Takahiro Shinohara, Mark Jefferd,
Mohammed Hadi Mehranpour, Chris Spiers

Possible microphysical mechanisms of inelastic deformation

Reservoir compaction: the cause for subsidence and induced seismicity
Prolonged gas production from the Groningen Gas Field has reduced the
initial gas pressure from 35 MPa in 1963 to 8 MPa by 2015. The resulting
increase in effective overburden stress has led to compaction at the
reservoir level. This compaction is expressed at the surface as subsidence,
while differential compaction across the many faults in the reservoir has led
to induced seismicity. Assuming subsidence at the surface corresponds to
compaction at depth, vertical reservoir compaction strains are 0.1-0.3%,
resulting from elastic and permanent (inelastic) deformation at the grain-
scale. Furthermore, some of the compaction may be rate- or time-
dependent, continuing even after production has stopped.

To evaluate the impact of gas extraction and to assess future
production-related hazards, identification and quantification of the
mechanisms controlling compaction of the reservoir during production
and after abandonment is required.

- 1) Grain failure/fracturing
a. Quartz framework
b. Other grains: plagioclase/feldspar, lithic fragments etc.
2) Plastic deformation of clay-rich lithic fragments

3) Grain-scale dissolution-precipitation

4) Grain-contact processes
a. Contact dissolution and/or crushing
b. Normal displacement: intergranular clay deformation
- c. Shear displacement: intergranular slip X
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Figure 1 Left: Under Groningen stress conditions, small, permanent
deformation is observed (arrows), where behaviour is generally assumed
to be purely elastic. Right: The amount of inelastic deformation increases
with porosity. Note the rapid increase in inelastic strain in Slochteren
sandstone with a porosity of > 20% (Pijnenburg et al., 2018, 2019b).
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