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Given the inherent heterogeneity of Earth materials, there exists an

acute need for a multiscale imaging approach to systematically analyse
microstructural variations across relevant length scales. However,
addressing the need for statistical representativeness often requires
imaging numerous samples at high magnification.

WHAT: The DLE-EM workflow

A Deep-Learning-Enhanced Electron Microscopy (DLE-EM) workflow
(Fig. 1), achieving a six- to sixteenfold acceleration of the imaging process
by capturing one or more high-resolution (HR) regions within a
low-resolution (LR) area. The overlapping HR and LR data is then used to
enhance the resolution of LR data for which no HR counterpart is
available.
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HOW: Integrated image registration and DL upscaling workflow ' ; Gen HR?

The workflow involves capturing one or more HR regions within a LR
area. Precise image registration is achieved in two steps: first, determining
the HR region's location within the LR region using a Fast Fourier
Transform algorithm [1], and second, refining image registration through
iterative calculation of a deformation matrix. This matrix, utilizing Newton's ini Learning
optimization method, aims to minimize differences between both images
[2]. Subsequently, paired HR and LR images undergo processing in a
Generative Adversarial Network (GAN), comprising a generator and a
discriminator. This GAN learns to generate HR images from LR
counterparts through joint training in an adversarial process.
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PERFORMANCE:

Fig. 2 depicts results from models trained using Mean Squared Error
(MSE) and Mean Absolute Error (MAE) loss functions. These models were
evaluated using random LR tiles, juxtaposed with their corresponding |
ground truth HR tiles. Inference

Fig. 2: From left to right: LR tiles that have been resized from 64x64 to 256x256
pixels using bicubic interpolation to match the HR tile size, generated data using
a model that was trained using MSE (50 epochs) and MAE (150 epochs) loss
functions, respectively, and the corresponding HR tiles.

Fig. 3 provides a quantitative analysis on a binary segmentation of a Fig. 1: Overview of DLE-EM workflow.
sandstone dataset, validating both models' ability to reproduce realistic
spatial distributions of pores of different sizes.
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Data was acquired at the Multi-scale Imaging and Tomography Facility (MINT) at Utrecht
University, funded by the Netherlands Research Council (NWO) via the EPOS-NL Research
Infrastructure programme.
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