

Faculty of Geosciences Department of Earth Sciences

www.uu.nl/earthsciences

Looking inside slow sand filters from fundamental scale to application scale

M. Samari-Kermani, J.F. Schijven, A. Raoof

Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands

Introduction

✓ Understanding subsurface transport of colloids such as pathogenic microorganisms is important to prevent waterborne diseases.

Results

BTCs

 \Box Log removal efficiency of 1.5 µm colloids increased from 0.18 under clean condition to 0.24, 0.56, and 1.9 under 1-day, 2.5-day, and 7-day biofilm

✓ The biofilm on top of slow sand filters (The Schmutzdecke) can affect colloids transport by altering media surface properties, porosity and permeability.

 \checkmark A multi scale study is crucial to investigate the role of biofilm on removal and attachment mechanisms inside slow sand filters (SSF).

Figure 1: Investigation of colloids removal in slow sand filters at different scales

Aim

✓ revealing links between schmutzdecke characteristics and filtration performance

Method

After 75 days of running the filters:

 Taking Schmutzdecke samples from different filters to measure biomass, carbohydrate, and protein content

conditions, respectively.

Figure 6: Removal efficiency of 1.5 µm colloids in the models with biofilms of various ages

Figure 7: BTCs of 1.5 µm colloids at the micro models effluent

Biofilm morphology - Confocal microscopy imaging

□ Biofilms showed rough, irregular structures with interior pores which elevated colloids removal efficiency.

□ Biofilm growth changed pores size distribution and connectivity which resulted in various removal mechanisms such as collision and straining.

рп

Figure 2: Syringe

scale Filters (UvA)

✓ Spiking High titer *E.coli* WR1 bacteria into the filters

✓ Taking water samples at influent, and effluent of the filters to measure bacterial removal efficiency.

Correlation equation

Yes=1 $\log_{10}(\frac{C}{C_0}) = -0.22 + 1.90*(Protein/Carbohydrate) + 0.34*SD_inoc$ No=0

Results

✓ Virgin fine sand was the most effective sand in bacterial removal.

✓ Inoculated filters showed higher efficiency than non-inoculated ones.

✓ (Protein/Carb) ratio was the only significant parameter in predicting log10 removal values.

Steady state E. coli log10 removal values

75-days running filters 75-days running filters Newly-installed filters (inoculated) (non-inoculated)

■ Waternet fine sand ■ Waternet coarse sand ■ Dunea washed sand

Figure 3: Various filters *E.coli* log10 removal values

Micro scale experiments: Sand filters on chip

Advantages of using microfluidics

Figure 8: Trapped colloids inside the rough structure of biofilm

Figure 9: Straining of colloids due to biofilm growth inside the pores

Preferential flow paths - Fluorescent microscopy imaging

□ Biofilm growth made preferential flow paths by clogging some of the pores.

□ Colloids are Forced the to move towards the open pores with lower resistance.

□ Direct observation of colloids and biomass interactions, biomass development and morphology

Figure 4: microfluidic devices

Gaining insight into pore-scale processes and attachment mechanisms

Methods

Developing biofilms of different ages inside microfluidics

□ Spiking 1.5 µm green fluorescent colloids into the models to measure colloids removal efficiency

Utilizing fluorescent imaging coupled with image analysis to track colloids within the models

□ Staining biofilm and observing morphology under confocal microscopy

Figure 5: Setup of biofilm growth

Figure 10: Colloid trajectories and created preferential flow paths due to biofilm growth

Conclusions

- The main findings showed that biofilm growth
- > substantially enhanced colloid removal efficiency
- > altered pore and throat size distributions
- resulted in different removal mechanisms including collision, and straining
- > impacted flow hydrodynamics and created preferential flow paths

This work is performed within the NWO-Dunea-Vitens partnership program. The program is funded by NWO, the national research council of the Netherlands [Project No. 17840]