Managing Land Subsidence in the Netherlands:
A Process-Based Modelling Approach to Evaluate Alternative Sustainable Pathways Reach out for more detals!

Deniz Kili¢'*, Gilles Erkens!-2, Kim M. Cohen?, Esther Stouthamer? @Wf}’

2 - LOSS
‘Department of Physical Geography: Geoscience§ Faculty: Utrecht University *d-kilic@uu-nD = N % Utr.eCht . De lta re S ?& Living on Soft Soils
2Land Subsidence Group: Deltares Research Institute % A‘\\\? Un 1vers lty * S Sharing is

encouraged

1. Research problem & goal 2. The land subsidence mechanism in the Netherlands
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Figure 1: Centuries of land use practices and adaptation efforts have worsened the land

subsidence and put the Netherlands at a precarious state (Figure adapted from . . . .
Stouthamer. 20211). d (Fig ! « The Netherlands has a history of adaptive land management by construction of canals, ditches, and
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« These adaptive measures mainly rely on periodic lowering of groundwater levels* (Figure 2) to sustain a

e Research question: Can we evaluate the impact of specific mitigation and adaptation strategies against land sub- certain root zone thickness by draining ditches via wind mills and mechanical pumpsts.

sidence in the Netherlands using 3D predictive modeling over a 100-year timeframe?
o Periodic lowering of groundwater levels put extensive organic-rich peat layers in contact with air, lead-

o Research goal: Assess the long-term impact of innovative mitigation and adaptation strategies on land sul?sid— ing to peat oxidation and loss of volume*s,
ence and peat oxidation in the Netherlands through 3D predictive modeling. By the end of this study, we aim to
provide valuable insights and recommendations for sustainable land management practices and policies that can « Increases in effective stress due to drop in pore pressures result in consolidation of sediments!°.

help mitigate the adverse effects of subsidence in this vulnerable area. .
o Clay rich sediments undergo further shrinkage due to drying, leading to mostly irreversible consolida-

tion'?,
3.a) Atlantis subsidence model b) Scenario development c) Data
Phase 1: Forward scenarios N epth Below Sround Level Over Time N
A set of forward scenarios was tested GeoTOP Subsurface Voxel Model A

lll to quantify the extent of land subsidence S BN

llll potential in the upcoming century: £ o] -
llll - water level periodic lowering g
l Subsidence - water level ﬁXlng =3001 — Ground m‘u\
. idati — ExP; 3ﬂcmbelo:f%rounl:e seca v,
OXI ation _ . . XP :De:reasen 10 cm per decade *-.\_"‘
Grid representation of water level indexation 4001 22 Expa: Decrasee of 50 cm per dacade
Water management parcels Shrinkage, 2020 2030 2040 2050 1:;':? 2070 2080 2090 2100
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Figure 3: Representation of water management parcels and discretization of the Medium Sand B shells
soil column in the Atlantis model (Bootsma et al., 2020). (a) Global temperature change Clayey sand, sandy clay Sl
_ P g Water Level Changes Over Time due to Mitigation Measures and loam
6 — Historical 51 i . —8— Scenario 1
18638 U 6 0] N =e- Scnain2 Figure 7: 3D lithological voxel model of the subsurface of the Netherlands up to 50m depth at
Atlantis! model quantifies key shallow land subsidence processes in the = 4 570 x - ® C ol o & 100-100-0.5m (X2 resolution (TNO-GSN)
Netherlands. g T 45 : ~ S
o 2 - 2 % 200 —  The top 1.2 meters of the soil column was defined using the BRO Bo-
Model specifications: s 2 3 5 demkaart dataset3.
Hydrostatic conditi d g = g 500 . L
* Hydrostalic conditions are assumed-. S0 = § e Soil column description from 1.2 meters to 30 meter depth were de-
» Consolidation based on abc-isotache concept®. i Near Mid  Long[ 0 O < fined using the TNO GeoTOPv1.4 model’s and NL3Ds.
» Peat oxidation described via an empirical relationship?. e o The mean yearly minimum water level (GLG) from 2020 was im-
. Potential CO . . dicti b d thod db ! | 2020 2030 2040 2050 2060 2070 2080 2090 2100 . e
otentia 2 emissions prediction based on method proposed by 1950 2000 2050 2100 Years posed at hydrostatic conditions.
Erkens et al. (2016)' Figure 5: Adapted from Figure 4.2 in IPCC,2021: Chapter 4. Figure 6: Potential changes in the water level as a result of ¢ Su}” face elevation data: .AHN3 > .
Predicted “Global surface air temperature changes relative to land subsidence mitigation efforts and land use practices in o Climate Chaﬂge scenarios were based on a str ong climate Change
1995-2014 average (left axis)” the Netherlands. impact from KNMI’14 pr edictions3?’.
4. Preliminary results from forward scenarios 5. From land subsidence to spatial impact predictions
a) 9 Using the land subsidence predictions as an input to damage risk algorithms for impact estimation.
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Forward scenarios based on potential water management practices indicate and confirm that: a
« Fixing water level w.r.t. ground level at 2020 (EXP1) limits the subsidence to shallow peat and clay areas in the
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o Periodic water level lower 1ng (EXP 2,3,4 shown in Figure 4) progr essively worsens the land subsidence. Figure 11: Optimal Control Model (OCM) proposed by Sen et al., Figure 12: A hypothetical example of spatial rural risk assessment by
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