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2. Conclusions & Recommendations 

We developed a new mechanistic model that predicts calcium removal 
rates in drinking water through pellet softening, carry-over of fine 
particles, and the saturation of the bed in subsequent treatment step. Our 
model relies solely on the values for the linear velocity in the softening 
reactor (v

s
), (average) particle size (d

p
), temperature (T) and saturation 

index with respect to calcite (SI
cal

). Validation of our model was carried 
out with our own experiments and real-time data. The implementation 
of our model enabled the derivation of key performance indicators 
(KPIs) to optimize the softening process, chemical usage, and reactor 
design, steering the drinking water treatment towards a more circular 
and environmentally sustainable process.
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Figure 1: Overview of the water treatment process at Waternet (Weesperkarspel), 
Amsterdam, The Netherlands.

● Innovation: A multidisciplanary approach is required for modelling of water softening treatment 
practices.

● Optimization: Understanding the consequences of preceding treatment steps on softening as well as 
the role of softening on subsequent treatment processes is crucial for global optimization of the 
model.

● Validation: Experiments are important to validate our mechanistic model, as well as real-time data 
from the treatment plant.

● Reactor Design: The fluidized bed in a pellet reactor should have a minimum height of 6 m, so 
softening can be practiced more flexible, to make it a more efficient process throughout the year 
with ever-changing process conditions. 

● Control: A combination of pH- and EC-driven control may be a better indicator to make the 
softening treatment step more flexible.

Fig. 8: Fluidized bed reactor set-up during experiments.

Fig. 9: Experimental conditions 
for all performed fluidized bed 
experiments.

Water samples taken, 
for SEM crystallite 
analyses, when:
- No bed
- Minor bed (± 30 cm)
- Medium bed (± 125 cm)
- Full bed (± 370 cm)

Calcite pellet samples 
taken, for estimation of 
pellet growth during 
experiment, at:
- Bottom (0 - 20 cm)
- Midway (± 125 cm)
- Top (± 370 cm)
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Fig. 3: Long-term temperature data.

Water
Air

Hydrodynamics

Temperature

Thermodynamics

Kinetics

Nucleation

BACFReactor & 
Conversion

J
p

h
BACF

MINTEQ

Influent water matrix

Alk CaTOT

I
TOT

K
sp

f
a

SI

ε
r

A
a

TCCCP

pH

NaOH

T

ρ
f μ

ν
k

ρ
s

g

Fr
pRe

p

v
s

d
p

Re
ε

ε

SSA
R

SSA
Wc

0
 c

1
 c

2

c
4
 c

5
SSV

Sc K
c

J
c

Sh

k
f

D
f

D
Ca

D
CO3

k
r

θ

k
r,20

D
r

A
r

h
r

t
r

m
Ca

M
W

J
nK

n

B
n

β
gs

σ
s

V
m

k
B

δ
fu

J
p

Temperature
Hydrodynamics
Thermodynamics
Kinetics
Nucleation
BACF
Ignored Factors
Reactor & Conversion

V
c

A
BACF

ε
BACF

ρfines

χ
s

τ
r

CO
2

h
BACF
CaCO

3

Fig. 2: Model framework and principles

Fig. 4: Total calcium removal rate J
p
. Fig. 5: BACF bed saturation 
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Fig. 6: Key performance indicators (KPI’s) showing 
optimal hydrodynamic and (kinetic) mass transfer 
conditions for heterogeneous crystallization.

Fig. 7: Optimized reactor design for maximum efficiency.
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Fig. 10: pH and CaTOT versus fluidized bed height 
for experiment W3.
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Fig. 12: Detailed analyses of fines (left) and calcite pellets (right) 
for experiment W3.
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Bed 
Height

Total # Particles Total Surface Area 
[mm2]

Avg. Solidity 
[-]

Avg. Roundness 
[-]

Avg. Circularity [-]

Before After Before After Before After Before After Before After

Bottom 483 420 1073 1036 0.979 0.981 0.870 0.879 0.695 0.727

Middle 897 897 1402 1397 0.982 0.982 0.857 0.860 0.795 0.801

Top 2415 2089 2180 2032 0.979 0.981 0.829 0.835 0.837 0.842

Whether your focus is in water tech, pharmaceuticals, 
oil & gas, or any field where advanced chemistry, 
scaling, or crystallization play a crucial role, I’m 
keen to see how my research and skills in R&D can 
help push your projects to the next level.
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