

Eco-evolutionary optimality (EEO) theory: "plants adapt

or acclimate to their environment, thereby eliminating uncompetitive plant strategies by natural selection" \rightarrow more dynamic, but still lacking explicit timescales \rightarrow leads to unrealistic predictions for vegetation modelling The **P-model**¹ is based on EEO theory

Aim: identify the temporal constraints on key leaf-level EEO traits and outline potential interactions between traits to improve EEO modeling (specifically the P-model)

Step 2: construct conceptual framework

- x- axis = idealized gas exchange response
- y-axis = idealized biochemical response
- \rightarrow Axes together: point of 'optimality'

LITERATURE REVIEW RESULTS

Especially stomatal and hydraulic traits

timescale				
0 _a Initial state				•
0 _a →1 instantaneous	A increase, c _i decrease	Increase in C _a	Increase in VPD	
1→2 minutes	Stomatal opening	Stomatal closure	Stomatal closure	
2→3 weeks	V _{cmax} upregulation	V _{cmax} downregulation	V _{cmax} upregulation	5
$3 \rightarrow 0_{b}$ months- years	New leaf with higher g _{smax}	New leaf with lower g _{smax}	New leaf with lower g _{smax}	
Net photosynthesis rate	Increased	Increased	Slightly decreased	

• Cell size may be driver of coordinated traits

 $\chi_{(optimal)}$ is not similar to $c_i:c_a$ as currently defined \rightarrow different response timescales

 Proposed redefinition χ_(optimal): "acclimated c_i:c_a jointly controlled by $g_{s(operational)}$ (instead of g_s), and acclimated V_{cmax}"

Acknowledging the costs, benefits, and constraints of leaf-level responses is a way forward in connecting plant ecophysiology with EEO modelling, thereby ontributing to the improvement of EEO modelling, and in particular the P-model.

REFERENCES: 1Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., & Wright, I. J. (2014). Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecology Letters, 17(1), 82–91. https://doi.org/10.1111/ele.12211, 2 Franks, P. J., Leitch, I. J., Ruszala, E. M., Hetherington, A. M., & Beerling, D. J. (2012). Physiological framework for adaptation of stomata to CO2 from glacial to future concentrations. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588), 537–546. https://doi.org/10.1098/rstb.2011.0270, ³ Mcelwain, J. C., & Lawson, T. (2016). Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution. New Phytologist, 209(1), 94–103. https://doi.org/10.1111/nph.13579, 4 Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144(4), 1890–1898. https://doi.org/10.1104/pp.107.101352 5 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., ... Villar, R. (2004). The worldwide leaf economics spectrum. www.nature.com/nature