

Question-based analysis of Geographic Information with Semantic Queries

Understanding quantities in geo-information in terms of amounts, magnitudes, extents, and intents

Eric Top

department of Human Geography and Spatial Planning, faculty of Geo-Sciences, Utrecht University, the Netherlands Advised by dr. Simon Scheider

Introduction

Quantities are paramount in Geographic <u>why</u>. To provide the knowledge behind their tities, namely *amounts* and *magnitudes*, and I approach them through two modes of Information science, but their unspoken intuition, to automate geo-(GI) analytical processes and to make quantity semantics are not well-understood. A GI namely extensional reasoning, and data retrievable on the semantic web, a *intensional* reasoning. The aim is to develop expert may understand <u>that</u> population counts can and population densities cannot principles for modeling GI quantities in theory of the semantics of quantities in GI is be summed, but they may not understand essential. I distinguish two types of quancomputational ontologies.

Amount and magnitude measurement

Amounts and magnitudes are quantities in quantity domains. A quantity domain is a structure between quantities of the same kind, for example a domain of spatial regions.

Amounts are mereological quantities. They behave like parts in a parthood relation and form a Boolean lattice. **Magnitudes** are vector quantities. They behave according to the axioms of a vector space and form linear orders.

Domains are connected through **measurement functions**. If the measure is an extensive quantity w.r.t. a controlling quantity, then it is directly measured from the control. Otherwise, it is mediated by another amount (See fig. 2).

Extensive quantities are summed when the corresponding entities are aggregated, e.g., the sum of sizes of Europe and Asia is the size of Eurasia.

$$\forall x, y \in X. \neg O(x, y) \rightarrow m(x) + m(y) = m(x + y) \quad (Additivity) \\ \forall x, y \in X. \neg O(x, y) \rightarrow m(x) - m(y) = m(x - y) \quad (Subtractivity)$$

O(x, y): Do x and y overlap? (e.g., the times 8:20-8:40 and 8:30-8:50 overlap) m(x): Measurement function on x (e.g., $m:Time \rightarrow Duration$)

Number of inhabitants in each province of the Netherlands, 2012	Living area of the European Pine	Long-wave radiation net gain, the	Number of days
	Marten in the Netherlands, 2014	Netherlands, 23-3-2021	14 mm of preci
			Dave with > 14 m

Extents and intents

Any term has an extent and an intent. The **extent** Extents and intents may encompasses all **examples** and the **intent** encompasses all imply quantities. It is thus **characteristics** of a particular term. For example, the term continent extends over Europe and Asia and has large land mass in its intent.

Formal concept analysis (FCA) offers a mathematical approach to defining concepts based on these two notions. Fig. 3 shows parthood

possible to count the atoms in a concept lattice. Atoms are vertices nearest to but not at the concept lattice's extrema.

Concepts in Formal Concept Analysis (FCA)

Let $A \subseteq X$ and $B \subseteq X$ and $I \subseteq X \times X$. Then:

 $\{m \in M \mid \forall g \in A ((g, m) \in I)\}$ equals the **intent** of A and $\{g \in G \mid \forall m \in B ((g,m) \in I)\}$ equals the **extent** of *B*. A and B form a <u>concept</u> (A, B) of I iff

the intent of A by I equals B and the extent of B by I equals A.

relations between spatial raster regions and propertyhood relations with their land uses. Each region has a number of land uses and each land use has a number of spatial regions, depending on the scale level.

Fig. 3: Extents and intents of raster regions

References

- 1. Top, E., Scheider, S., Xu, H., Nyamsuren, E., & Steenbergen, N. (2022). The semantics of extensive quantities within geographic information. Applied Ontology, 17(3), 337-364.
- 2. Top, E., & Scheider, S. (2023). I am What I Have and I Have What I am, What am I?. In Formal Ontology in Information Systems (pp. 210-224). IOS Press.

3. Top, E. J., Romm, D. & McKenzie, G. (2023a), Exploring the Duality of Space and Place through Formal Geo-Concepts, in 'Proceedings of the Fourth International Symposium on Platial Information Science (PLATIAL'23)', Zenodo, Dortmund, Germany.

