
Damping
Constrain fast oscillations and large 

overswingings of model through 
spatial and temporal damping

1 import numpy as np

2 import pandas as pd

3 from pathlib import Path

4 from pymaginverse import InputData, FieldInversion

5

6 # load csv-file into InputData class

7 path = Path().absolute()

8 dataset = pd.read_csv(path / 'example_data.csv', index_col=0)

9 inputdata = InputData(dataset)

10

11 ##### start geomagnetic field inversion #####

12 # set time array and maximum spherical degree

13 test_inv = FieldInversion(t_min=-2000, t_max=1990, t_step=10, maxdegree=10)

14 # load data-class and set damping types: Ohmic heating and minimum acceleration

15 test_inv.prepare_inversion(inputdata, spat_type='ohmic_heating',

16 temp_type='min_acc')

17 # set starting model, should have 120 elements

18 x0 = np.zeros(test_inv._nr_coeffs)

19 x0[0] = -30000

20 # run inversion by setting start model, damp factors, and max # iterations

21 test_inv.run_inversion(x0, spat_damp=1.0e-13, temp_damp=1.0e-3, max_iter=5)

22 # save gauss coefficients results

23 test_inv.save_coefficients(path / 'output', file_name='example')

1

Global Geomagnetic Field Modeling with Python - pymaginverse
Frenk Out1, Maximilian Schanner2,3, Liz van Grinsven1, Monika Korte3, and Lennart V. de Groot1

Input Data
GEOMAGIA[k,l] or 
own CSV dataset>>>pip install pymaginverse

Damping
parameters

Data
Time knots

Degree model Degree model

InclinationIntensity Declination

nanoTeslas

Radial field at CMB

References
[a] Shure et al. (1982). Physics of the Earth and Planetary Interiors 28.
[b] Bloxham & Jackson (1992). Journal of Geophysical Research 97.
[c] Holme & Bloxham (1996). Journal of Geophysical Research: Planets 101.
[d] Jackson et al. (2000). Phil. Trans. of the Royal Society of London. Series A: Math., 
Phys. and Eng. Sc. 358.
[e] Korte et al. (2009). Geochemistry, Geophysics, Geosystems 10.
[f] Finlay et al. (2020). Earth, Planets and Space 72.
[g] Constable et al. (2000). Phil. Trans. of the Royal Society of London. Series A: Math., 
Phys. and Eng. Sc. 358.
[h] Mahgoub et al. (2023a). Journal of Geophysical Research: Solid Earth 128.
[i] Constable & Parker (1988). Journal of Computational Physics 78.
[j] De Boor (1978). springer-verlag New York volume 27.
[k] Brown et al. (2015a). Earth, Planets and Space 67.
[l] Brown et al. (2015b). Earth, Planets and Space 67
[m] Schanner et al. (2020). pymagglobal-Python interface for global geomagnetic field 
models

1Paleomagnetic laboratory Fort Hoofddijk, Utrecht University, NL
2Institute of applied mathematics, Potsdam University, De
3Helmholtz Centre Potsdam, Deutsches GeoForschungsZentrum GFZ, De

Link to github 
pymaginverse

Link to 
manuscript

email:
f.out@uu.nl

Methods
The algorithm is based on solving Laplace’s equation in spherical coordinates 
using the source free assumption. Time-dependence is introduced with 
B-Splines[i,j]. The algorithm employs an iterative scheme to use non-linear data, 
where 8 different damping types 
can be imposed. However, 
damping parameters have lost 
physical basis, so model 
uncertainties are to be interpreted 
relatively. We lifted heavy 
computational weight with Cython 
and changed the structure of the 
algorithm to attain a further 
speed-up.

Tutorials 
included to 

demonstrate the 
capabilities of the 

algorithm
Save results in Fortran, 

pymagglobal[m], or 
CSV-format

LOAD DATA

INITIATE CLASS

Code

Output

RUN MODEL

Benchmark
To ensure consistency we compared this Python algorithm 
to the Fortran version. In our benchmark we employed 
non-linear data randomly generated using pymagglobal[m]. 
This benchmark shows deviations for Python less than 17 
nT with a mean of 0.3 nT from the Fortran version. 
> Due to different numerical precision (32-bit vs 64-bit). 

Introduction & Motivation
• Regularized least squares models (RLS) are used in geomagnetic field 
modeling since the 1980’s, written in Fortran[a,b,c,d]

• Fortran’s lack of error clarity, documentation, and version control 
leads to maintenance challenges and compatibility issues.[e]

• We translated RLS models into a Python version with
accompanying literature overview and published on github

• This Python version is, in terms of speed, on par with Fortran
• RLS models require geomagnetic data and spatial and temporal 
smoothness constraints to invert for Gauss coefficients (g1

0, g1
1, ...)

• RLS models are used for modeling historical-to-millennial 
scale magnetic fields[b,e,f], snapshots thereof[g], and reversals[h]


