Modelling Eocene carbon cycle tipping points

What can hyperthermal events teach us about our future climate?

Studying potential tipping behaviour of methane hydrate, permafrost, and peat reservoirs during past short-time warming events to help us understand their future.

Eocene hyperthermals Past short-term

Carbon reservoirs Tipping behaviour in

warming events as future analogues

During the Early Eocene (56 to 48 Ma), several short-term warming episodes occurred, associated with significant changes in the carbon cycle. However, the precise mechanisms behind these changes remain unclear.

Warming events and carbon release during the early Eocene

Deep oc<mark>ean tempe</mark>rature warming **0**18 **0**18 0.1-0.0 0.0 0.0 0.0 0.0 carbon release Carbon cycle

methane hydrates, permafrost and peat?

The release of carbon from methane hydrates, permafrost, and/or peat likely played a role, but how do these reservoirs react? Can we identify temperature thresholds? Do they show tipping behaviour?

Long-term carbon reservoirs

methane hydrates

organic carbon in soils & peat

permafrost

References

- 1. Barnet et al. (2019). Paleoceanography & Paleoclimatology, 34.
- 2. Laurentano et al. (2016). Newsletters on Stratigraphy, 49.
- 3. Westerhold (2018). Paleoceanography & Paleoclimatology, 33.
- 4. Zeebe (2012). Goescientific Model Development, 5.

Mark Elbertsen m.v.elbertsen@uu.nl

Supervisors Dr. Marlow Cramwinckel Prof. Dr. Lucas Lourens

